1 Type theory: Semantics

Let U is a non-empty set of entities. For every type τ , the domain of possible denotations D_{τ} is given by:

- $-D_e = U$
- $-D_t = \{0, 1\}$
- $-D_{\langle \sigma, \tau \rangle}$ is the set of functions from D_{σ} to D_{τ} .

A model structure is a pair $M = \langle U_M, V_M \rangle$ such that

- $-U_M$ is a non-empty set of individuals
- V_M is a function assigning every non-logical constant of type τ a member of D_{τ} .

Interpretation:

- $[\alpha]^{M,g} = V_M(\alpha)$ if α is a constant
- $\llbracket \alpha \rrbracket^{M,g} = g(\alpha)$ if α is a variable
- $\left[\left[\alpha(\beta) \right]^{M,g} = \left[\alpha \right]^{M,g} \left(\left[\beta \right]^{M,g} \right)$
- $[\![\lambda v\alpha]\!]^{M,g} = \text{that function } f: D_{\sigma} \to D_{\tau} \text{ such that for all } a \in D_{\sigma}, f(a) = [\![\alpha]\!]^{M,g[v/a]}$ (for v a variable of type σ)
- $\ \llbracket \alpha = \beta \rrbracket^{M,g} = 1 \text{ iff } \llbracket \alpha \rrbracket^{M,g} = \llbracket \beta \rrbracket^{M,g}$
- $\ \llbracket \neg \phi \rrbracket^{M,g} = 1 \text{ iff } \llbracket \phi \rrbracket^{M,g} = 0$
- $\llbracket \phi \wedge \psi \rrbracket^{M,g} = 1 \text{ iff } \llbracket \phi \rrbracket^{M,g} = 1 \text{ and } \llbracket \psi \rrbracket^{M,g} = 1$
- $-\ \llbracket\phi\vee\psi\rrbracket^{M,g}=1\ \mathrm{iff}\ \llbracket\phi\rrbracket^{M,g}=1\ \mathrm{or}\ \llbracket\psi\rrbracket^{M,g}=1$
- $[\![\phi \to \psi]\!]^{M,g} = 1$ iff $[\![\phi]\!]^{M,g} = 0$ or $[\![\psi]\!]^{M,g} = 1$
- $[\exists v \phi]^{M,g} = 1$ iff there is an $a \in D_{\tau}$ such that $[\![\phi]\!]^{M,g[v/a]} = 1$ (for v a variable of type τ)
- $\llbracket \forall v \phi \rrbracket^{M,g} = 1$ iff for all $a \in D_{\tau}$, $\llbracket \phi \rrbracket^{M,g[x/a]} = 1$ (for v a variable of type τ)

2 Cooper Storage

Transitive verbs are analysed as constants of type $\langle \langle \langle e, t \rangle, t \rangle, \langle e, t \rangle \rangle$.

Storage:
$$\langle Q, \Delta \rangle \Rightarrow_S \langle \lambda P.P(x_i), \Delta \cup \{Q_i\} \rangle$$

if A is an noun phrase whose semantic value is $\langle Q, \Delta \rangle$, then $\langle \lambda P.P(x_i), \Delta \cup \{Q_i\} \rangle$ is also a semantic value for A, where $i \in N$ is a new index.

Retrieval:
$$\langle \alpha, \Delta \cup \{Q_i\} \rangle \Rightarrow_R \langle Q(\lambda x_i.\alpha), \Delta \rangle$$

if A is any sentence with semantic value $\langle \lambda \alpha, \Delta \cup \{Q_i\} \rangle$, then $\langle Q(\lambda x_i.\alpha), \Delta \rangle$ is also a semantic value for A.

3 Nested Cooper Storage

```
Storage: \langle Q, \Delta \rangle \Rightarrow_S \langle \lambda P. P(x_i), \{\langle Q, \Delta \rangle_i\} \rangle
```

if A is an noun phrase whose semantic value is $\langle Q, \Delta \rangle$, then $\langle \lambda P.P(x_i), \{\langle Q, \Delta \rangle_i\} \rangle$ is also a semantic value for A, where $i \in N$ is a new index.

Retrieval: $\langle \alpha, \Delta \cup \{\langle Q, \Gamma \rangle_i\} \rangle \Rightarrow_R \langle Q(\lambda x_i.\alpha), \Delta \cup \Gamma \rangle$

if A is any sentence with semantic value $\langle \alpha, \Delta \cup \{\langle Q, \Gamma \rangle_i \} \rangle$, then $\langle Q(\lambda x_i.\alpha), \Delta \cup \Gamma \rangle$ is also a semantic value for A.

4 DRT: Syntax

A discourse representation structure (DRS) K is a pair $\langle U_K, C_K \rangle$ where

- U_K is a set of discourse referents
- $-C_K$ is a set of conditions.

Conditions:

$R(u_1,\ldots,u_n)$	R is an n -place relation, $u_i \in U_K$
u = v	$u, v \in U_K$
u = a	$u \in U_K$, a a proper name
$K_1 \Rightarrow K_2$	K_1 and K_2 DRSs
$K_1 \vee K_2$	K_1 and K_2 DRSs
$\neg K_1$	K_1 is a DRS

5 DRT: Embedding, verifying embedding

Let U_D be a set of discourse referents, $K = \langle U_K, C_K \rangle$ a DRS with $U_K \subseteq U_D$, $M = \langle U_M, V_M \rangle$ a model structure of first-order predicate logic that is suitable for K. An embedding of U_D into M is a (partial) function from U_D to U_M that assigns individuals from U_M to discourse referents.

An embedding f verifies the DRS K in M $(f \models_M K)$ iff

- 1. $U_K \subseteq \text{Dom}(f)$ and
- 2. f verifies each condition $\alpha \in C_K$.

f verifies a condition α in M ($f \models_M \alpha$) in the following cases:

```
f \models_{M} R(u_{1}, \dots, u_{n}) \quad \text{iff } \langle f(u_{1}), \dots, f(u_{n}) \rangle \in V_{M}(R)
f \models_{M} u = v \quad \text{iff } f(u) = f(v)
f \models_{M} u = a \quad \text{iff } f(u) = V_{M}(a)
f \models_{M} K_{1} \Rightarrow K_{2} \quad \text{iff for all } g \supseteq_{U_{K_{1}}} f \text{ such that } g \models_{M} K_{1},
\text{there is } h \supseteq_{U_{K_{2}}} g \text{ such that } h \models_{M} K_{2}
f \models_{M} \neg K_{1} \quad \text{iff there is no } g \supseteq_{U_{K_{1}}} f \text{ such that } g \models_{M} K_{1}
f \models_{M} K_{1} \vee K_{2} \quad \text{iff there is a } g_{1} \supseteq_{U_{K_{1}}} f \text{ such that } g_{1} \models_{M} K_{1},
\text{or there is a } g_{2} \supseteq_{U_{K_{2}}} f \text{ such that } g_{2} \models_{M} K_{2}.
```